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Abstract
Using a connection between the q-oscillator algebra and the coefficients of the
high temperature expansion of the frustrated Gaussian spin model, we derive
an exact formula for the number of closed random walks of given length and
area, on a hypercubic lattice, in the limit of infinite number of dimensions. The
formula is investigated in detail, and asymptotic behaviour is evaluated. The
area distribution in the limit of long loops is computed. As a byproduct, we
also obtain an infinite set of new, nontrivial identities.

PACS numbers: 05.40.Fb, 05.50.+q

1. Introduction

Let us consider, on a hypercubic lattice of dimension D, all closed paths of length 2k, starting
from a given vertex. An interesting and still unanswered question concerns the counting of
such paths according to the area they enclose. Besides being a challenging combinatorial
problem in its own right, the question also has some relevance from a physical point of view:
considering, for instance, the hopping of a charged particle around a two-dimensional lattice
in a uniform magnetic field [1–3], its energy spectrum displays an intricate hierarchic structure
[4], whose properties are closely related to the area versus length distribution of closed paths
[5]. Such a distribution finds applications also in polymer physics [6, 7], and in explaining
anomalous magnetoconductance [8]. A different but somehow related problem is the counting
of random walks according to the number of distinct sites they visit [9, 10]: relatively compact
loops are expected to enclose a small area and to visit relatively few sites, and vice versa. This
counting problem is relevant when investigating random walks on lattices with static traps.

Coming back to the initial question of counting loops according to their enclosed area, in
the case of a two-dimensional lattice, the answer was given only in the limit of asymptotically
large k in [11], and the first subleading correction was provided in [12]. In higher dimension,
the problem is in general even more difficult. Here we want to address the question in the
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limit of infinite dimensionality of the lattice, a very peculiar situation, in which however some
simplifications occur, and an exact answer can be given. The latter is to be interpreted as
a ‘mean-field’ approximation to the exact counting on a lattice of finite dimensionality D.
Such a formulation of the problem was first considered by Parisi et al [13, 14]. They were
investigating spin models with frustration but without any quenched disorder, in order to test
the conjecture that such deterministic models could behave at low temperature as some suitably
chosen spin-glass model with quenched disorder. They considered the frustrated spherical and
XY spin models in the limit of large dimensionality D of the lattice, where the saddle-point
approximation becomes exact. In their analysis of these models, they showed how the high
temperature expansion (i.e. loop expansion) can be nicely rewritten by using the q-oscillator
algebra [15], where q measures the frustration per plaquette. Similar q-deformed algebraic
relations have also appeared in the Hofstadter problem of quantum particles hopping on a two-
dimensional lattice in a uniform magnetic field [16]. This problem is closely related to the
frustrated spin models, which can be considered as simplified models of hopping in the large
D and classical limits. The use of somehow related non-commutative geometry techniques
also appeared as a crucial ingredient in [12].

The problem we address and solve in this paper may be stated as follows: given an
infinite-dimensional hypercubic lattice, what is the number Gk,l of loops of length 2k, starting
from a given vertex, enclosing a minimal area of exactly l plaquettes1?

The paper is organized as follows. In the next section we summarize some results of
[13, 14] which are then used in section 3 to obtain an exact expression for the counting
numbers Gk,l . In section 4 a generating function for these counting numbers is presented.
In section 5 a probability distribution is naturally associated with the Gk,l , and a systematic
procedure is built to compute its moments of arbitrary order. The asymptotic behaviour of
this probability distribution for large k is evaluated in section 6, while section 7 is devoted to
the presentation of some new, nontrivial identities. The last section contains our conclusions,
while some technical details are relegated to the appendix.

2. Frustrated lattice and q-oscillator algebra

In [13, 14], Parisi et al considered the frustrated Gaussian, spherical and XY models on a
D-dimensional hypercubic lattice, in the large D limit. Among other things, they unveiled a
remarkable connection between the coefficients of the high temperature expansion (i.e. loop
expansion) and the q-oscillator algebra [15], where q measures the frustration per plaquette and
varies continuously on the real interval [−1, +1], between the fully-frustrated case (q = −1,
fermionic algebra) and the ferromagnetic case (q = 1, bosonic algebra). For our purposes,
the relevant part of the Hamiltonians describing the models considered in [13, 14] is

H = − 1√
2D

∑
〈jk〉

φ
†
jUjkφk + h.c. (1)

The complex field φj ∈ C is defined on the sites (labelled by j ) of a D-dimensional hyper-
cubic lattice; frustration is induced on the lattice through the nearest-neighbour couplings Ujk ,
which are complex numbers of modulus 1 and satisfy the relation Ujk = U∗

kj ; they are the
link variables of a background Abelian lattice gauge field, chosen in such a way as to produce
a static and constant magnetic field, suitably oriented to give the same magnetic flux ±B

for any plaquette of the lattice (the product of the four U around the plaquette being e±iB ).
1 When facing this problem of area versus length distribution of closed random walks, the area is most often
considered in its algebraic sense, i.e. as oriented; in our case, however, an average over orientations is intrinsically
performed in the approach (see section 2), and we are therefore referring to the absolute value of the area.
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Such a magnetic field has the same projection over all the axes, modulo the sign; in [13, 14]
these signs were chosen randomly in order to avoid the selection of a preferred direction.
The usual unfrustrated ferromagnetic spin interaction is obtained for B = 0. Non-vanishing
values of B induce a frustration around each plaquette, which is maximal for B = π , the
fully-frustrated case.

In the framework of the high temperature expansion, the free energy of such models is
expressed as a sum over the contribution of loops of increasing length 2k:

βF =
∞∑

k=0

β2k

2k
Gk. (2)

Each loop encloses a number of plaquettes; in the case of the models considered in [13, 14],
for each loop the magnetic field yields a weight proportional to exp(iBA), where A is the sum
of plaquettes with signs depending on the orientations. The total contribution of all loops of
length 2k is given by Gk. Due to the average over orientations and loops, the quantity Gk is a
polynomial in the variable q = cos B, the coefficient Gk,l of ql being given by the number of
loops of length 2k and area l.2 The infinite dimensionality of the lattice ensures that for any
given loop, no two plaquettes of the subtended minimal surface will lie on the same plane; this
in turn accounts for such a simple averaging over orientations, performed independently for
each plane. The order of polynomial Gk(q) is given by k(k − 1)/2, the maximal area can be
enclosed by a loop of length 2k. The coefficients Gk,l can also be interpreted as the number of
Feynman diagrams with 2k external points, which are joined pairwise by lines (propagators)
intersecting l times. These diagrams also occur in the topological (large N) expansion of
matrix models [17], where the planar limit corresponds to no intersections, i.e. to the q = 0
case. Equivalently, in simple graphical terms, they can just be seen as the number of ways of
connecting pairwise 2k points on a circle with k segments intersecting exactly l times. In the
following we shall refer to this last picture3. In [13], the enumeration of such diagrams was
investigated. In particular, a recursion relation was found for the coefficients of the polynomial
Gk(q)—a sort of Wick theorem—which can be nicely expressed in terms of the algebra of the
q-oscillators aq, a

†
q :

aqa
†
q − qa†

qaq = 1. (3)

These operators [15] act on the Hilbert space spanned by the vectors: |m〉,m = 0, 1, . . . , as
follows:

aq|m〉 = √
[m]q |m − 1〉 aq|0〉 = 0

a†
q|m〉 = √

[m + 1]q |m + 1〉 [m]q = 1 − qm

1 − q
.

(4)

Using the recursion relation, the weighted multiplicities of the diagrams of equation (2) were
neatly written as an expectation value over the ground state of the q-oscillators [13, 14]:

Gk(q) = 〈0|(a†
q + aq

)2k|0〉. (5)

The authors of [13, 14] did not exploit the consequences of this result, preferring to
turn themselves to the numerical investigation of the models they were interested in. As a
consequence, till now only the two limiting cases Gk(0) and Gk(1) were explicitly known;
when q = 1 it is only a matter of counting the ways of connecting 2k points on a circle,
with no restrictions, and this is simply the number of pairings of 2k objects: (2k − 1)!! .
2 The area of a loop is defined as the minimal area of a surface of lattice plaquettes having that loop as boundary.
3 This formulation of the problem was considered, e.g., by Pauling [18] when trying to simplify the calculation of
matrix elements involved in Slater’s treatment of the electronic structure of molecules.
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When q = 0 we are in fact evaluating the planar limit of the zero-dimensional 2k-point Green
function of a matrix model in the limit of vanishing interaction [17]. In simple graphical
terms this corresponds to the number of ways of joining pairwise 2k points on a circle with
no intersection. In other words, this is just one of the many possible definitions of Catalan
numbers (see, e.g., [19]), given as

Gk(0) = (2k)!

k!(k + 1)!
. (6)

But the numbers Gk,l , counting the ways of connecting pairwise 2k points on a circle, with
exactly l interactions (i.e. the coefficients of ql in Gk(q)), are not so easily accessible. In
[13, 14], it was found by direct enumeration of the graphs on a computer. In [20], a generating
function for coefficients Gk,l was obtained, proposed, but then the explicit evaluation of such
coefficients relied upon heavy symbolic manipulations.

3. Exact solution of the enumeration problem

We shall now present a simple, easy to evaluate, formula for a generic coefficient Gk,l . To this
purpose let us first introduce the xq coordinate representation, xq = a

†
q + aq, xq |x〉 = x|x〉,

which is given by the so-called continuous q-Hermite polynomials [22, 23]. These are defined
by

Hn(x) = 〈x|n〉Cn Cn = ([n]q!)1/2C0 (7)

where the normalization constant C0 is fixed by H0(x) = 1 and the q-factorial is

[n]q! = [n]q[n − 1]q · · · [1]q [1]q = [0]q = 1. (8)

These polynomials satisfy, of course, a three-term recursion relation in the index n:

xHn(x) = Hn+1(x) + [n]qHn−1(x) n � 1. (9)

x ranges over the interval x ∈ [−2/
√

1 − q, 2/
√

1 − q], and a convenient parametrization is

x = 2√
1 − q

cos θ θ ∈ [0, π]. (10)

More properties of these q-Hermite polynomials can be found in [22], where they are defined
as Hn(cos θ) = (1 − q)n/2Hn(x). The most important property for us is the orthogonalizing
measure νq(x) [21–23]:

∫ 2/
√

1−q

−2/
√

1−q

νq(x) dxHn(x)Hm(x) = δn,m[n]q! (11)

νq(x) =
√

1 − q

2π
q−1/8�1

(
θ

π
, τ

)

=
√

1 − q

π

∞∑
n=0

(−1)nqn(n+1)/2 sin[(2n + 1)θ ] (12)

where �1(z, τ ) is the first Jacobi theta function [24]:

�1(z, τ ) =
∑
n∈Z

exp
(

iπτ
(
n + 1

2

)2
+ 2π i

(
n + 1

2

) (
z − 1

2

))
q = e2π iτ . (13)

It is worth emphasizing that, interestingly enough, measure (12) interpolates continuously
between the Wigner semi-circle law for Gaussian matrix models, and the Gaussian distribution,
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as q varies from 0 to 1−; this reminds us of the behaviour of the density distribution of
eigenvalues for a Gaussian ensemble of random matrices, as the dimension of the matrices, N,
varies from ∞ to 1.

Polynomial Gk(q) may now be rewritten as

Gk(q) =
∫ 2/

√
1−q

−2/
√

1−q

νq(x)x2k dx. (14)

Indeed, using explicit form (12) for the integration measure, performing the integral and
playing a little bit with indices, we may write

Gk(q) =
(

1

1 − q

)k k∑
l=0

(−1)l
(

2k + 1

k − l

)
2l + 1

2k + 1
ql(l+1)/2. (15)

We now only need to perform explicitly the division of the polynomial of degree k(k+1)/2
defined by the sum in the previous formula. To this purpose, let us state the following:

Theorem4. Let P(q) = ∑N
l=0 plq

l be an integer coefficient polynomial of degree N in q,
exactly divisible by (1 −q)k. Then A(q) = P(q)/(1 −q)k is an integer coefficient polynomial
of degree N − k whose coefficients are simply expressed in terms of the pl as follows:

A(q) =
N−k∑
l=0

alq
l al =

l∑
i=0

(
k + l − 1 − i

k − 1

)
pi. (16)

We therefore readily get a simple closed expression for Gk,l:

Gk,l =
imax∑
i=0

(−1)i
(

k + l − 1 − i(i + 1)/2

k − 1

)(
2k + 1

k − i

)
2i + 1

2k + 1
l � k(k − 1)

2
(17)

where imax = [(−1 +
√

1 + 8l)/2]i.p. is the largest integer i satisfying i(i + 1)/2 � l. Because
of their definition as counting numbers, all integers Gk,l should be positive. This fact is indeed
not apparent from (17), and we are not able to present a rigorous proof of this statement,
nevertheless we are convinced of its validity. Sensible arguments rely upon the intrinsic
positivity of (5) and its derivatives with respect to q, for any value of q in the interval [0, 1).

We have computed explicitly with Mathematica [25], through formula (17), which is very
efficient, all values Gk,l for k ranging from 1 to 9, and verified that they indeed match the
results of [14] which were found by direct enumeration of the graphs on a computer.

4. Generating function

Let us define a generating function for the combinatorial numbers Gk,l :

R(z, q) ≡
∞∑

k=0

Gk(q)zk =
∞∑

k,l=0

Gk,lq
lzk. (18)

The running of index l may or may not be restricted to the range 0 � l � k(k − 1)/2, without
loss of generality: coefficients Gk,l automatically vanish for l > k(k − 1)/2. From expression
(14), we may readily write generating functions for coefficients Gk(q):

R(z, q) =
∫ 2/

√
1−q

−2/
√

1−q

νq(x)
1

1 − zx2
dx. (19)

4 We are unfortunately unable to quote any reference. We are of course convinced that this theorem was enounced
a long time ago, indeed it is just a corollary of Ruffini’s rule. The only proof we have been able to give, absolutely
inelegant and unworthy of being presented here, is by direct verification.
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Inserting for the measure its explicit expression (12), and performing the integral, we obtain

R(z, q) =
√

1 − q

z

∞∑
n=0

(−1)nqn(n+1)/2

[
K

(
z

1 − q

)]2n+1

(20)

where we introduced

K(α) = 1 − √
1 − 4α

2
√

α
. (21)

For q = 0 function (20) reduces to the standard generating function of Catalan numbers. The
singularities of R(z, q) in the complex z-plane are completely determined by those of the
simpler function K(z/(1 − q)). Actually the series is very well convergent for |q| < 1 as any
Jacobi theta function. Moreover, for |q| = 1, it is a geometric series, which is still convergent
because |K(α)| < 1 for |z| < zc ≡ (1 − q)/4.

Generating function (20), as shown in [20] in a different context, can be interpreted
physically as the internal energy at temperature T = 1/

√
z of a Gaussian spin model defined

on the sites of the infinite-dimensional frustrated lattice introduced in [13, 14].

5. Moments of the distribution

The interpretation of coefficients Gk,l naturally suggests the introduction, for each positive
integer value of index k, of the following normalized (discrete) probability distribution:

Pk(l) = Gk,l∑k(k−1)/2
l=0 Gk,l

= Gk,l

Gk(1)
= Gk,l

(2k − 1)!!

{
k = 0, 1, . . .

l = 0, 1, . . . , k(k − 1)/2
(22)

whose interpretation is obvious: given an arbitrary diagram with 2k legs, the probability for it to
have exactly l crossings is simply given by Pk(l); equivalently, Pk(l) measures the probability,
for a randomly chosen closed path of length 2k on our infinite-dimensional hypercubic lattice,
to have area equal to l. The moments of the previous probability distribution are defined as

M(k)
s ≡ 〈ls〉k =

k(k−1)/2∑
l=0

lsPk(l) (23)

and can be computed from the following generating function:

P̃ k(q) ≡ 〈ql〉k = Gk(q)

Gk(1)
. (24)

Indeed,

M(k)
s =

[(
q

∂

∂q

)s

P̃ k(q)

]
q=1

=
[(

∂

∂ log q

)s

P̃ k(q)

]
q=1

. (25)

The moments of the deviations with respect to the mean M
(k)
1 (central moments) are given

by a similar expression:

m(k)
s ≡ 〈(

l − M
(k)

1

)s 〉
k

=
[(

∂

∂ log q

)s

P̃ k(q)q−M
(k)
1

]
q=1

. (26)

The computation of such moments, besides being interesting in its own right, is (at least for
the first two) a necessary step towards the evaluation of the asymptotic form of probability
distribution (22) in the limit k → ∞. We therefore need a systematic procedure to calculate
Gk(q), together with its derivatives, at q = 1. Indeed, from expression (14), we essentially
need to evaluate the derivatives at q = 1 of the integration measure (12). Unfortunately, such
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a limit, due to the presence of the Jacobi theta function, is highly singular: for fixed values
of x, νq(x) develops an essential singularity at q = 1. A prescription should be given, in our
situation the natural one being to choose to approach q = 1 from real, smaller than 1, values
of q; in a more convenient, equivalent notation, we want to evaluate the behaviour of νq(x) in
the limit ε → 0+, ε real, defined by q ≡ e−ε . With such a choice, as shown in the appendix,
we can write any given moment M(k)

s as a simple combination of trivial Gaussian moments:

M(k)
s = (−1)s

(2k − 1)!!

1√
2π

∫ +∞

−∞
dx x2kcs(x) e− x2

2 (27)

where cs(x) is an even polynomial of degree 4s in x. The only practical difficulty is the explicit
computation of the sth coefficient cs(x) of the Taylor expansion around ε = 0+, of the function

√
1 − e−ε e

ε
8

1√
ε

exp

(
−1

2

[
4

ε
arcsin2

(x

2

√
1 − e−ε

)
− x2

])
. (28)

The expansion can be calculated manually up to the first few orders in ε, but soon becomes
intractable. It is, however, a trivial task if we use some symbolic manipulation program such
as Mathematica [25]. We shall give here explicit results for the first few moments:

M
(k)
0 = 1

M
(k)

1 = k(k − 1)/6

M
(k)
2 = k(k − 1)(5k2 − k + 12)/180 (29)

M
(k)

3 = k(k − 1)(35k4 + 14k3 + 235k2 − 188k + 24)/7560

M
(k)
4 = k(k − 1)(175k6 + 315k5 + 2341k4 − 1959k3 + 2056k2 − 5664k − 2160)/226 800.

Analogously, the evaluation of the central moments m(k)
s is reduced to the explicit computation

of the sth coefficient of the Taylor expansion around ε = 0+, of the function

√
1 − e−ε e

ε
8

1√
ε

exp

(
−1

2

[
4

ε
arcsin2

(x

2

√
1 − e−ε

)
− x2

])
eεk(k−1)/6 (30)

with the following results:

m
(k)

0 = 1

m
(k)
1 = 0

m
(k)
2 = (k + 3)k(k − 1)/45

m
(k)

3 = (2k + 3)(2k + 1)k(k − 1)/945

m
(k)

4 = k(k − 1)(7k4 + 37k3 + 7k2 − 108k − 45)/4725.

(31)

By direct inspection of the formulae, it is possible to extract the large k behaviour of generic
moments. Since cs(x) is a polynomial of degree 4s in x, M(k)

s ∼ (2k + 4s − 1)!!/(2k − 1)!! =
O(k2s) as k → ∞.5 Following a similar line of thought, and taking into account some
cancellations which may occur more or less severely, according to the parity of s, it is also
possible to guess that m(k)

s = O
(
k[ 3

2 s]i.p.
)

for asymptotically large k.

Let us further note that, on the infinite-dimensional hypercubic lattice, from M
(k)
1 ∼ k2/6,

the area of random loops increases on average as the square of their length. This should be
contrasted with the two-dimensional lattice [12], where the average area increases of course
as the square of the average linear extension of the loop, that is as the first power of the length
itself.

5 More precisely, it is easy to show that M
(k)
s = (k2/6)s[1 + O(1/k)] for large k.
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We shall conclude this section by considering coefficients Gk,l for fixed values of l. We
then have for each integer value l an infinite succession of integer numbers. From direct
inspection of formula (17), for asymptotically large values of k we can write

Gk,l = Gk,0
kl

l!

[
1 + O

(
1

k

)]
l fixed. (32)

6. Asymptotic behaviour of distribution Pk(l)

Let us turn back to probability distribution Pk(l), equation (22). We want to investigate its
asymptotic behaviour as k → ∞. The standard procedure is to rescale the discrete index l to
a continuous variable t using the average and the standard deviation as computed in section 5
for generic k:

l → µk + σkt

µk ≡ M
(k)

1 = k(k − 1)

6

σ 2
k ≡ m

(k)
2 = (k + 3)k(k − 1)

45
.

(33)

It is now possible to define the asymptotic probability distribution (22) as

P(t) = lim
k→∞

σkPk(µk + σkt). (34)

Unfortunately, the coefficients Gk,l are defined in terms of alternate sums of very large
numbers (about

√
2l terms, each one of order O(kk), summing up to a much smaller number6),

so that the evaluation of the asymptotic distribution P(t) is not completely straightforward.
Indeed, we are interested in the behaviour of the Gk,l for large k and large l, l ∼ k2/6, and the
simple estimate of equation (32) is now completely useless.

In principle, the asymptotic behaviour of coefficients Gk(q) for large values of k is encoded
in the behaviour of generating function R(z, q), equation (20), in the vicinity of its closest (with
respect to the origin) singularity in the variable z. The latter is situated at z = zc ≡ (1 − q)/4.
But since we are interested in the behaviour of Gk,l where l is also asymptotically large, but in
a controlled way, see (33), we must inspect the generating function in the vicinity of its closest
(again, with respect to the origin) singularity in variable q, that is near q = 1. But in this way
zc is collapsing towards the origin, conspiring to the construction of an essential singularity
in z = zc = 0 as q → 1−. To tackle this difficulty we shall not investigate the generating
function R(z, q), but we shall rather resort to the Laplace transform method, applied directly
to probability distribution Pk(l); let us first introduce the Laplace transform

φk(s) =
k(k−1)/2∑

l=0

Pk(l) e−s(
l−µk
σk

) (35)

of probability distribution Pk(l), suitably shifted and rescaled according to equation (33).
In the large k limit, φk(s) is expected to converge pointwise to the Laplace transform of
distribution P(t):∫ +∞

−∞
dtP (t) e−st . (36)

Since we may write

φk(s) = es
µk
σk

〈
e−s l

σk

〉 = es
µk
σk

Gk

(
e− s

σk

)
Gk(1)

(37)

6 Just as an example, let us quote that G100,1000 is expressed through formula (17) as an alternate sum of 45 numbers
of order up to 10200, being itself of order 10179, i.e. 21 orders of magnitude smaller.
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and σk ∼ k3/2 for large k, the asymptotic behaviour of Pk(l) is ruled by the behaviour of Gk(q)

in the neighbourhood of unity. Indeed, after identification of ε with s/σk , we can make use of
the machinery developed in section 5 and the appendix. We start by using the fact that, up to
terms vanishing exponentially for small ε (q = e−ε),

Gk(q) =
∫ +∞

−∞
dx x2kF(x, ε) (38)

with F(x, ε) given by equation (52). For ε = 0 (q = 1), the evaluation of the integral
reduces to a straightforward application of the saddle-point method: we have to sum up the
contribution of the neighbourhoods of two stationary points situated in x = x± = ±√

2k,
respectively. We readily get

Gk(1) =
√

2(2k)k e−k

[
1 + O

(
1

k

)]
(39)

which is indeed the leading asymptotics for (2k − 1)!!, as it should be. Now, for ε small
but positive (we are therefore specializing to positive real values of s), for each of the two
stationary points x = x±, we just shift the integration variable x to x± + y and expand the
integrand, including F(x, ε), around k = ∞. Considering, e.g., the contribution coming from
the positive stationary point x+, and taking into account only terms up to O(log k), we get

I+ ∼ 1√
2π

∫
dy exp

([
k log 2k − k − y2 − s

2

√
5k −

√
10sy − 2s2

])
(s > 0). (40)

Of course the situation in which s < 0 has to be computed, too, but the result turns out to be
independent of the sign of s. Integrating and adding the analogous contribution coming from
the region in the neighbourhood of x−, we finally obtain

Gk

(
e− s

σk

) =
√

2(2k)k e−k exp

(
s2

2
− s

2

√
5k

) [
1 + O

(
1√
k

)]
(41)

and thus, for asymptotically large values of k

φk(s) = e
s2

2

[
1 + O

(
1√
k

)]
. (42)

Indeed, by comparison with equation (36), we have thus proved that P(t) as defined in
equation (34) is a standard Gaussian distribution:

P(t) = 1√
2π

e− t2

2 . (43)

This result gives us further information about the asymptotic behaviour of the central
moments m(k)

s of distribution Pk(l): indeed, rescaling each central moment m(k)
s by a factor

σ−s
k ∼ k− 3

2 s (correspondingly to the rescaling of the discrete variable l to the continuous one t),
and performing the k → ∞ limit, we must find the moments of a standard (unit variance)
Gaussian distribution, namely 0 or (s − 1)!!, for odd or even values of s, respectively. This on
one hand confirms rigorously the estimate m(k)

s = σ−s
k · (s − 1)!![1 + O(1/k)] (s even) and on

the other hand matches the guessed behaviour m(k)
s ∼ k[ 3

2 s]i.p. (s odd).
As for the area versus length distribution, the result we have found, equation (43), does

not agree with the behaviour proposed in [11, 12]; however, the role of D → ∞ limit, inherent
to our treatment, must be taken into proper account. In this limit, all loops with more than
one plaquette of the subtended surface lying over the same plane are neglected; on the other
hand, on the two-dimensional lattice considered in [11, 12] there is only one possible plane.
Moreover, having averaged over orientations, we restrict ourselves to the absolute value of
area, while in [11, 12], algebraic (oriented) area is considered.
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When considering very compact loops, their distribution is ruled by the left tail of
equation (43). In [10] the different but somehow related problem of the distribution p(s, t) of
random walks of t steps visiting exactly s different sites was addressed on a cubic lattice. In
particular, an asymptotic formula in the regime of large t and relatively small s was proposed,
which describes the distribution of compact walks. However, the two distributions are not
comparable: indeed, in our situation of infinite dimensionality, the most compact loops of
length 2k have zero enclosed area, but still visit a relatively large number of distinct sites, at
least k + 1; more precisely, when the dimensionality of the lattice is very large, the number of
walks which take more than one step in the same direction is of order 1/D with respect to those
stepping in k different directions, and therefore even the most compact walk, the one coming
back to the origin every two steps, at leading order in D visits k different sites, in addition to
the origin. In other words, the connection between the two notions of compactness, as small
enclosed area, or as small number of visited sites, is lost in the limit of infinite dimensionality.

7. An infinite hierarchy of nontrivial identities

We would like to conclude with a simple consideration, which in our opinion is, however,
rather striking and deserves further investigation. The exact evaluation of moments M(k)

s gives
as a byproduct an infinite set of nontrivial and somehow intriguing identities, the simplest of
them being

k(k−1)/2∑
l=0

Gk,l = (2k − 1)!! k = 0, 1, 2, . . . (44)

and in general

k(k−1)/2∑
l=0

Gk,l l
s = M(k)

s (2k − 1)!! k = 0, 1, 2, . . . (45)

with Gk,l and M(k)
s explicitly given by formulae (17) and (27), (28), respectively. These

identities are of course encoded in the Jacobi theta function, essentially in its modular
invariance properties, equation (48), but they come nevertheless rather unexpected.

Other sets of identities can be obtained if we are able to compute the Gk,l in an independent
and simple way. This is indeed very easy, e.g., Gk,k(k−1)/2, which counts the number of
diagrams with 2k external points and maximal crossing number, and is thus obviously equal to
1 for any k ( just connect the j th point with the (j +k)th one, j = 1, . . . , k). From equation (17)
we may therefore write

k−1∑
i=0

(−1)i
(

k(k + 1)/2 − 1 − i(i + 1)/2

k − 1

) (
2k + 1

k − i

)
2i + 1

2k + 1
= 1 k = 0, 1, 2, . . . .

(46)

Identities of this second sort are however more obvious: equation (46) is just the simplest
example of a whole bunch of identities encoded in an obvious symmetry of polynomial
Gk(q): by applying the theorem of section 3 (equation (16)) to the new polynomial
G̃k(q) = qk(k−1)/2Gk(1/q), with Gk(q) expressed in terms of equation (15), one obtains
new coefficients G̃k,l , which obviously satisfy G̃k,l = Gk,(k(k−1)/2)−l ; setting in particular
l = 0, we readily get equation (46).
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8. Conclusions

The problem of counting closed paths of given length on a lattice, according to the area they
enclose, is a difficult one. In the present paper we have tackled the question on a hypercubic
lattice, in the limit of infinite dimensionality. Moreover, an average over orientations is
inherent to the method we have used. But these conditions have allowed us to give a closed
answer, which is moreover exact under the restriction we have assumed. The main flaw of
the whole method resides in our opinion in the fact that the computation of even only the first
corrections in 1/D to coefficients Gk,l is out of reach. On the other hand, we have presented
an explicit solution to a combinatorial problem which could hardly be addressed directly;
in this respect, the connection between the abstract combinatorial puzzle and the physical
model proposed in [13] is crucial. The exact solution proposed for coefficients Gk,l has been
investigated in detail; their asymptotic behaviour has been evaluated; finally, as a byproduct,
an infinite set of new nontrivial identities has been obtained.
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Appendix

We want to build up a procedure to compute in a systematic way derivatives of arbitrary order
of Gk(q) with respect to log q , at q = 1. From the explicit expression (14) of Gk(q), we
have to take into account the q dependence of both the integration interval and the integration
measure νq(x), given by equation (12). As for the latter, the task is indeed not completely
straightforward, since for fixed values of x, νq(x) develops an essential singularity in the
limit q → 1, and should be regularized. In the presence of an essential singularity, the
result of the limiting procedure depends on the direction chosen to approach the singularity,
and a regularization is a prescription on how the singularity is approached. Indeed, if we
restrict q to the real axis and approach q = 1 from smaller values, it is possible to write the
integration measure νq(x)

(
x = 2√

1−q
cos θ

)
as a sum of a completely regular contribution,

Taylor expandable in the real variable ε (q = e−ε), plus a singular contribution vanishing with
all its derivatives for ε → 0+. Indeed, we shall show that

νq(x) = F(x, ε)[1 + O(e−1/ε)] (47)

F(x, ε) being an analytic function of ε.
Using modular invariance, we can write

�1

(
θ

π

∣∣∣∣τ
)

= i√−iτ
e−iθ 2/πτ�1

(
θ

πτ

∣∣∣∣ − 1

τ

)
. (48)

On the other hand, from definition (13), letting τ = iε
2π

,

�1

(
θ

πτ

∣∣∣∣ − 1

τ

)
= 1

i
e− π2

2ε e
2πθ
ε

∑
n∈Z

(−1)n exp

(
−2π2

ε

(
n2 + n − 2n

θ

π

))
. (49)
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For arbitrary small positive ε, and for θ
π

in the open interval (0, 1), the leading contribution
is given by the n = 0 term in the infinite sum, all other terms being exponentially small. We
may therefore write, for τ = iε

2π
, and 0 < ε 
 1,

�1

(
θ

πτ

∣∣∣∣ − 1

τ

)
∼ 1

i
e− π2

2ε e
2πθ
ε [1 + O(e− 1

ε )] (50)

and for the measure νq(x) we readily get, in the limit q → 1−, or q = e−ε, ε → 0+, the
approximate behaviour (47), with

F(x, ε) = √
1 − e−ε e

ε
8

1√
2πε

exp

[
−2

ε

(
θ − π

2

)2
]

(51)

= √
1 − e−ε e

ε
8

1√
2πε

exp

[
−2

ε
arcsin2

(x

2

√
1 − e−ε

)]
(52)

= 1√
2π

e− x2

2

∞∑
r=0

cr(x)

r!
εr (53)

where the coefficients cr(x) are given by the Taylor expansion in the neighbourhood of the
origin ε = 0 of the analytical function:

√
1 − e−ε e

ε
8

1√
ε

exp

(
−1

2

[
4

ε
arcsin2

(x

2

√
1 − e−ε

)
− x2

])
. (54)

c0(x) = 1 trivially while higher coefficients cr(x) can be shown to be even polynomials of
degree 4r in x. In the neighbourhood of q = 1 we may therefore write, up to terms vanishing
exponentially for small ε,

Gk(q) = 1√
2π

∫ 2√
1−q

− 2√
1−q

dx x2k e− x2

2

∞∑
r=0

cr(x)

r!
εr . (55)

Let us now observe that the integration limits diverge as 1/
√

ε, while the integrand falls as
a quadratic exponential. Therefore, up to terms which vanish exponentially for small ε, the
integration interval can be readily extended to the whole real axis, and the computation of
moments (25) is finally reduced to the Taylor expansion of (54) and the evaluation of a sum
of standard Gaussian integrals:

M(k)
s = (−1)s

(2k − 1)!!

1√
2π

∫ +∞

−∞
dx e− x2

2 x2kcs(x). (56)

As an example, let us compute explicitly the first moment, M
(k)

1 . The first coefficient of
the Taylor expansion of (54) is

c1(x) = − 1
8 + 1

4x2 − 1
24x4 (57)

and therefore, denoting by 〈〈· · ·〉〉 the Gaussian average (with variance equal to 1), and
exploiting the standard relation 〈〈x2k〉〉 = (2k − 1)!!

M1(k) = 1

〈〈x2k〉〉
[

1

8
〈〈x2k〉〉 − 1

4
〈〈x2k+2〉〉 +

1

24
〈〈x2k+4〉〉

]
(58)

= 1

8
− 1

4
(2k + 1) +

1

24
(2k + 3)(2k + 1) (59)

= k(k − 1)

6
. (60)
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